> Abstract Submitted
> for the AP R98 Meeting of
> The American Physical Society

Sorting Category: I.11.a

Onset of Deformation in ${ }^{60}$ Ni. ${ }^{1}$ W.D. WEINTRAUB, H.Q.

 JIN, W. REVIOL, L.L. RIEDINGER, Univ. of Tennessee, C. BAKTASH, M.J. BRINKMAN, D.J. DEAN, C.-H. YU, ORNL, M. DEVLIN, D.R. LAFOSSE, D.G. SARANTITES, Washington Univ., M. LEDDY, Univ of Manchester, I.Y. LEE, A.O. MACCHIAVELLI, LBNL, D. RUDOLPH, Ludwig-Maximilians-Universität München - High-spin states in ${ }^{60} \mathrm{Ni}$ were populated using the ${ }^{28} \mathrm{Si}\left({ }^{36} \mathrm{Ar}, 4 \mathrm{p}\right)$ reaction with beam energy of 136 MeV . Gammasphere at LBNL was used in conjunction with Microball to measure gamma rays selected for the charged-particle exit channels of interest. A total of 2 billion events was recorded, with the 4 p channel to ${ }^{60} \mathrm{Ni}$ representing approximately 11% of the data. In our analysis, the previously known level scheme ${ }^{2}$ has been extended up to energy and spin of 20 MeV and $20 \hbar$. The multiplicity of levels up to $I=10$ are well explained by shell-model calculations including the $g_{9 / 2}$ single-particle orbital into the $f p$-shell configuration space. At higher spins, evidence for rotational-like behavior increases. Two apparently rotational structures have large $M 1$ values and are perhaps shears bands, likely involving one $g_{9 / 2}$ particle. Furthermore, an $E 2$ sequence with a larger moment of inertia is observed that could correspond to other deformed structures in the region, involving two $g_{9 / 2}$ particles. Comparisons to calculations will be given.${ }^{1}$ Supported by the U.S. Department of Energy.
${ }^{2}$ G. Moyat et al., Nuclear Physics A318, 236 (1979).

X	Prefer Oral Session
\square	Prefer Poster Session

Walter Reviol
wreviol@utk.edu

Prefer Poster Session
Member ID: M60007870

